Functional characterization of poplar wood-associated NAC domain transcription factors.
نویسندگان
چکیده
Wood is the most abundant biomass produced by land plants. Dissection of the molecular mechanisms underlying the transcriptional regulation of wood formation is a fundamental issue in plant biology and has important implications in tree biotechnology. Although a number of transcription factors in tree species have been shown to be associated with wood formation and some of them are implicated in lignin biosynthesis, none of them have been demonstrated to be key regulators of the biosynthesis of all three major components of wood. In this report, we have identified a group of NAC domain transcription factors, PtrWNDs, that are preferentially expressed in developing wood of poplar (Populus trichocarpa). Expression of PtrWNDs in the Arabidopsis (Arabidopsis thaliana) snd1 nst1 double mutant effectively complemented the secondary wall defects in fibers, indicating that PtrWNDs are capable of activating the entire secondary wall biosynthetic program. Overexpression of PtrWND2B and PtrWND6B in Arabidopsis induced the expression of secondary wall-associated transcription factors and secondary wall biosynthetic genes and, concomitantly, the ectopic deposition of cellulose, xylan, and lignin. Furthermore, PtrWND2B and PtrWND6B were able to activate the promoter activities of a number of poplar wood-associated transcription factors and wood biosynthetic genes. Together, these results demonstrate that PtrWNDs are functional orthologs of SND1 and suggest that PtrWNDs together with their downstream transcription factors form a transcriptional network involved in the regulation of wood formation in poplar.
منابع مشابه
Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus.
NAC domain transcription factors are important regulators that activate the secondary wall biosynthesis in wood formation. In this work, we investigated the possible functions of an NAC family member SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN2 (PtSND2) using chimeric repressor silencing technology. Reverse transcription-polymerase chain reaction, subcellular localization and transcriptional a...
متن کاملDissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar.
Wood biomass is mainly made of secondary cell walls; hence, elucidation of the molecular mechanisms underlying the transcriptional regulation of secondary wall biosynthesis during wood formation will be instrumental to design strategies for genetic improvement of wood biomass. Here, we provide direct evidence demonstrating that the poplar (Populus trichocarpa) wood-associated NAC domain transcr...
متن کاملThe Poplar MYB Master Switches Bind to the SMRE Site and Activate the Secondary Wall Biosynthetic Program during Wood Formation
Wood is mainly composed of secondary walls, which constitute the most abundant stored carbon produced by vascular plants. Understanding the molecular mechanisms controlling secondary wall deposition during wood formation is not only an important issue in plant biology but also critical for providing molecular tools to custom-design wood composition suited for diverse end uses. Past molecular an...
متن کاملWood reinforcement of poplar by rice NAC transcription factor.
Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secon...
متن کاملPtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar
Some R2R3 MYB transcription factors have been shown to be major regulators of phenylpropanoid biosynthetic pathway and impact secondary wall formation in plants. In this study, we describe the functional characterization of PtoMYB156, encoding a R2R3-MYB transcription factor, from Populus tomentosa. Expression pattern analysis showed that PtoMYB156 is widely expressed in all tissues examined, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 152 2 شماره
صفحات -
تاریخ انتشار 2010